试题
题目:
(2009·雅安)如图,在平行四边形ABCD中,点E、F分别在BC、AD上,且∠BAE=∠DCF.
(1)求证:△ABE≌△CDF;
(2)若AC⊥EF,试判断四边形AECF是什么特殊四边形,并证明你的结论.
答案
解:(1)∵在平行四边形ABCD中,
∴∠B=∠D,AB=CD,
又∵∠BAE=∠DCF.
∴△ABE≌△CDF;
(2)∵△ABE≌△CDF,
∴BE=DF,
∴BC-BE=AD-FD,
∴EC=AF,
∵AD∥BC,
∴∠FAC=∠ECA,∠CEF=∠AFE,
∴△AOF≌△COE,
∴AO=CO,EO=FO,
又∵AC⊥EF,
∴四边形AECF是菱形.
解:(1)∵在平行四边形ABCD中,
∴∠B=∠D,AB=CD,
又∵∠BAE=∠DCF.
∴△ABE≌△CDF;
(2)∵△ABE≌△CDF,
∴BE=DF,
∴BC-BE=AD-FD,
∴EC=AF,
∵AD∥BC,
∴∠FAC=∠ECA,∠CEF=∠AFE,
∴△AOF≌△COE,
∴AO=CO,EO=FO,
又∵AC⊥EF,
∴四边形AECF是菱形.
考点梳理
考点
分析
点评
平行四边形的判定与性质;全等三角形的判定与性质;菱形的判定.
(1)平行四边形的对边相等,对角相等,即∠B=∠D,AB=CD,根据已知给出的∠BAE=∠DCF,可证明两个三角形全等.
(2)可先证明四边形AECF中对角线的关系,根据AC⊥EF,从而判断出到底是什么特殊的四边形.
本题考查了平行四边形的判定和性质,平行四边形的对边平行且相等,对角相等,全等三角形的判定和性质,菱形的判定.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?