试题
题目:
(2007·仙桃)如图,已知:梯形ABCD中,AD∥BC,E为AC的中点,连接DE并延长交BC于点F,连接AF.
(1)求证:AD=CF;
(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD成为菱形,并说明理由.
答案
(1)证明:在△DEA和△FEC中,
∵AD∥BC,
∴∠DAE=∠FCE,∠ADE=∠EFC.
又∵E为AC的中点,
∴AE=CE.
∴△DEA≌△FEC.
∴AD=CF.
(2)添加DA=DC.
证明:∵AD∥BC,
又∵AD=CF,
∴四边形AFCD为平行四边形.
又∵DA=DC,
∴四边形AFCD为菱形.
(1)证明:在△DEA和△FEC中,
∵AD∥BC,
∴∠DAE=∠FCE,∠ADE=∠EFC.
又∵E为AC的中点,
∴AE=CE.
∴△DEA≌△FEC.
∴AD=CF.
(2)添加DA=DC.
证明:∵AD∥BC,
又∵AD=CF,
∴四边形AFCD为平行四边形.
又∵DA=DC,
∴四边形AFCD为菱形.
考点梳理
考点
分析
点评
专题
梯形;全等三角形的判定与性质;菱形的判定.
(1)∵AD∥BC,∴∠DAE=∠FCE.∠ADE=∠EFC,∵E为AC的中点,∴AE=CE.利用AAS证得△DEA≌△FEC.∴AD=CF;
(2)若四边形AFCD成为菱形,则应证四边形AFCD是平行四边形,因而加一组邻边相等即可,如:DA=DC.
本题利用了:(1)两直线平行,内错角相等;(2)全等三角形的判定和性质;(3)平行四边形和菱形的判定.
证明题;开放型.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?