试题
题目:
(2007·南京)两组邻边分别相等的四边形我们称它为筝形.
如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,
(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;
(2)如果AC=6,BD=4,求筝形ABCD的面积.
答案
(1)证明:①在△ABC和△ADC中,
AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC.
②∵△ABC≌△ADC,
∴∠BAO=∠DAO.
∵AB=AD,OA=OA,
∴△ABO≌△ADO.
∴OB=OD,AC⊥BD.
(2)解:筝形ABCD的面积=△ABC的面积+△ACD的面积
=
1
2
×AC×BO+
1
2
×AC×DO,
=
1
2
×AC×(BO+DO),
=
1
2
×AC×BD,
=
1
2
×6×4,
=12.
(1)证明:①在△ABC和△ADC中,
AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC.
②∵△ABC≌△ADC,
∴∠BAO=∠DAO.
∵AB=AD,OA=OA,
∴△ABO≌△ADO.
∴OB=OD,AC⊥BD.
(2)解:筝形ABCD的面积=△ABC的面积+△ACD的面积
=
1
2
×AC×BO+
1
2
×AC×DO,
=
1
2
×AC×(BO+DO),
=
1
2
×AC×BD,
=
1
2
×6×4,
=12.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
分别利用SSS,SAS求证△ABC≌△ADC,△ABO≌△ADO,从而得出OB=OD,AC⊥BD,筝形的面积公式可用△ABC的面积与△ACD的面积和求得.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.求出AC⊥BD是正确解决本题的关键.
几何综合题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?