试题
题目:
如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,且AB=CD.
(1)试问OE=0F吗?请说明理由.
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.
答案
解:(1)OE=0F;
证明:∵DE⊥AC,BF⊥AC,
∴∠DEF=∠BFE=90°.
∵AE=CF,AE+EF=CF+EF.即AF=CE.
在Rt△ABF和Rt△CDE中,
∵
AB=CD
AF=CE
,
∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
在△BFO和△DEO中,
∵
∠BFO=∠DEO
∠BOF=∠DOE
BF=DE
,
∴△BFO≌△DOE(AAS),
∴OE=0F;
(2)结论依然成立.
理由:由AE=CF,得AF=CE,
结合已知得Rt△ABF≌Rt△CDE,
由BF=DE,从而△BFO≌△DEO,
∴FO=EO,
即结论依然成立;
解:(1)OE=0F;
证明:∵DE⊥AC,BF⊥AC,
∴∠DEF=∠BFE=90°.
∵AE=CF,AE+EF=CF+EF.即AF=CE.
在Rt△ABF和Rt△CDE中,
∵
AB=CD
AF=CE
,
∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
在△BFO和△DEO中,
∵
∠BFO=∠DEO
∠BOF=∠DOE
BF=DE
,
∴△BFO≌△DOE(AAS),
∴OE=0F;
(2)结论依然成立.
理由:由AE=CF,得AF=CE,
结合已知得Rt△ABF≌Rt△CDE,
由BF=DE,从而△BFO≌△DEO,
∴FO=EO,
即结论依然成立;
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFO≌△DEO,从而得出OE=0F.
(2)结论仍然成立,同理可以证明得到.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
证明题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?