试题
题目:
已知AP∥BQ,AE平分∠PAB,∠AEB=90°,过E点的直线交AP于D,交BQ于C.求证:AD+BC=AB.
答案
证明:在AB上截取AF=AD,
∵AE平分∠PAB,
∴∠DAE=∠FAE,
在△DAE和△FAE中,
∵
AD=AF
∠DAE=∠FAE
AE=AE
,
∴△DAE≌△FAE(SAS),
∴∠AFE=∠ADE,
∵AD∥BC,
∴∠ADE+∠C=180°,
∵∠AFE+∠EFB=180°,
∴∠EFB=∠C,
∵BE平分∠ABC,
∴∠EBF=∠EBC,
在△BEF和△BEC中,
∵
∠EFB=∠C
∠EBF=∠EBC
BE=BE
,
∴△BEF≌△BEC(AAS),
∴BC=BF,
∴AD+BC=AF+BF=AB.
证明:在AB上截取AF=AD,
∵AE平分∠PAB,
∴∠DAE=∠FAE,
在△DAE和△FAE中,
∵
AD=AF
∠DAE=∠FAE
AE=AE
,
∴△DAE≌△FAE(SAS),
∴∠AFE=∠ADE,
∵AD∥BC,
∴∠ADE+∠C=180°,
∵∠AFE+∠EFB=180°,
∴∠EFB=∠C,
∵BE平分∠ABC,
∴∠EBF=∠EBC,
在△BEF和△BEC中,
∵
∠EFB=∠C
∠EBF=∠EBC
BE=BE
,
∴△BEF≌△BEC(AAS),
∴BC=BF,
∴AD+BC=AF+BF=AB.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
首先在AB上截取AF=AD,由AE平分∠PAB,利用SAS即可证得△DAE≌△FAE,继而可证得∠EFB=∠C,然后利用AAS证得△BEF≌△BEC,即可得BC=BF,继而证得AD+BC=AB.
此题考查了全等三角形的判定与性质以及平行线的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
证明题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?