试题
题目:
(2006·济南)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.
(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)
(2)证明:四边形AHBG是菱形;
(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)
答案
(1)解:△ABC≌△BAD.
证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,
∴△ABC≌△BAD(SAS).
(2)证明:∵AH∥GB,BH∥GA,
∴四边形AHBG是平行四边形.
∵△ABC≌△BAD,
∴∠ABD=∠BAC.
∴GA=GB.
∴平行四边形AHBG是菱形.
(3)解:需要添加的条件是AB=BC.
(1)解:△ABC≌△BAD.
证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,
∴△ABC≌△BAD(SAS).
(2)证明:∵AH∥GB,BH∥GA,
∴四边形AHBG是平行四边形.
∵△ABC≌△BAD,
∴∠ABD=∠BAC.
∴GA=GB.
∴平行四边形AHBG是菱形.
(3)解:需要添加的条件是AB=BC.
考点梳理
考点
分析
点评
专题
正方形的判定;全等三角形的判定与性质;菱形的判定.
(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.
(2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,·AHBG的两邻边相等,从而得到平行四边形AHBG是菱形.
本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.
几何综合题;压轴题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?