试题
题目:
(2004·聊城)如图,在四边形ABCD中,AB=DC,AC=BD,AD≠CB.求证:四边形ABCD是等腰梯形.
答案
证明:∵AB=DC,AC=BD,BC=BC,
∴△ABC≌△DCB.
∴∠ACB=∠DBC.
∴OB=OC.
∵AC=BD,
∴AC-CO=DB-BO,
即:OA=OD.
∴∠DAO=∠ADO,
∵∠AOD=∠BOC,
∴∠DAO=∠ACB.
∴AD∥BC.
∵AD≠CB,AB=DC,
∴四边形ABCD是等腰梯形.
证明:∵AB=DC,AC=BD,BC=BC,
∴△ABC≌△DCB.
∴∠ACB=∠DBC.
∴OB=OC.
∵AC=BD,
∴AC-CO=DB-BO,
即:OA=OD.
∴∠DAO=∠ADO,
∵∠AOD=∠BOC,
∴∠DAO=∠ACB.
∴AD∥BC.
∵AD≠CB,AB=DC,
∴四边形ABCD是等腰梯形.
考点梳理
考点
分析
点评
专题
等腰梯形的判定;全等三角形的判定与性质.
先利用全等三角形的判定△ABC≌△DCB得出对应角相等,从而推出AD∥BC,因为AD≠CB,AB=DC,所以四边形ABCD是等腰梯形.
此题主要考查学生对等腰梯形的判定的掌握情况,做题时要求对已知进行灵活运用.
证明题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?