试题
题目:
(2003·青海)此题有A、B、C三类题目,其中A类题4分,B类题6分,C类题8分,请你任选一类证明,多证明的题目不记分.
(A类)已知:如图1,AB=AC,AD=AE,求证:∠B=∠C;
(B类)已知:如图2,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC,求证:OB=OC;
(C类)如图3,△BDA、△HDC都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你在图中找出一对全等三角形,并写出证明过程.
答案
证明:(A类)
在△ABD和△ACE中
AB=AC
∠A=∠A
AD=AE
,
∴△ABD≌△ACE(SAS).
∴∠B=∠C.
(B类)
证明:∵AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,
∴OE=OD.
在△BOE和△COD中
∠OEB=∠ODC=90°(3分)
OE=OD
∠BOE=∠COD(对顶角相等)(4分)
,
∴△BOE≌△COD(ASA).
∴OB=OC.
(C类)
证明:△BDH≌△ADC,
∵△BDA、△HDC都是等腰直角三角形,
∴BD=AD.
∠BDH=∠ADC=90°.
HD=CD.
∴△BDH≌△ADC(SAS).
证明:(A类)
在△ABD和△ACE中
AB=AC
∠A=∠A
AD=AE
,
∴△ABD≌△ACE(SAS).
∴∠B=∠C.
(B类)
证明:∵AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,
∴OE=OD.
在△BOE和△COD中
∠OEB=∠ODC=90°(3分)
OE=OD
∠BOE=∠COD(对顶角相等)(4分)
,
∴△BOE≌△COD(ASA).
∴OB=OC.
(C类)
证明:△BDH≌△ADC,
∵△BDA、△HDC都是等腰直角三角形,
∴BD=AD.
∠BDH=∠ADC=90°.
HD=CD.
∴△BDH≌△ADC(SAS).
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(A类)要证明两角相等,可以证明它们所在的三角形全等,因为AB=AC,AD=AE,夹角∠A为公共角,所以两三角形全等.
(B类)要证明两边相等,可以证明它们所在的三角形全等,根据AO平分∠BAC和两个垂直,可以得到OE=OD,在Rt△BEO和Rt△CDO中,根据角边角判定方法,两三角形全等.
(C类)从等腰直角三角形的两直角边相等考虑,已经有两边对应相等,所以如果夹角相等,就可以得到全等三角形,而夹角正好都是直角,所以可以得到△ADC≌△BDH.
本题考查了三角形全等的判定及性质;熟练掌握全等三角形的判定是解题的关键,另外准确识别图形对解好几何题目也很重要.
证明题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?