试题
题目:
如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与
BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.
(1)若HE=HG,求证:△EBH≌△GFC;
(2)若CD=4,BH=1,求AD的长.
答案
(1)证明:∵HE=HG,
∴∠HEG=∠HGE,
∵∠HGE=∠FGC,∠BEH=∠HEG,
∴∠BEH=∠FGC,
∵G是HC的中点,
∴HG=GC,
∴HE=GC,
∵∠HBE=∠CFG=90°.
∴△EBH≌△GFC;
(2)解:过点H作HI⊥EG于I,
∵G为CH的中点,
∴HG=GC,
∵EF⊥DC,
HI⊥EF,
∴∠HIG=∠GFC=90°,
∠FGC=∠HGI,
∴△GIH≌△GFC,
∵△EBH≌△EIH(AAS),
∴FC=HI=BH=1,
在△ADE和△FDE中:∠BEH=∠HEG,∠A=∠DFE=90°,DE=DE,
∴△ADE≌△FDE,
∴DF=AD,
∴AD=4-1=3.
(1)证明:∵HE=HG,
∴∠HEG=∠HGE,
∵∠HGE=∠FGC,∠BEH=∠HEG,
∴∠BEH=∠FGC,
∵G是HC的中点,
∴HG=GC,
∴HE=GC,
∵∠HBE=∠CFG=90°.
∴△EBH≌△GFC;
(2)解:过点H作HI⊥EG于I,
∵G为CH的中点,
∴HG=GC,
∵EF⊥DC,
HI⊥EF,
∴∠HIG=∠GFC=90°,
∠FGC=∠HGI,
∴△GIH≌△GFC,
∵△EBH≌△EIH(AAS),
∴FC=HI=BH=1,
在△ADE和△FDE中:∠BEH=∠HEG,∠A=∠DFE=90°,DE=DE,
∴△ADE≌△FDE,
∴DF=AD,
∴AD=4-1=3.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;直角梯形.
(1)熟记全等三角形的判定定理,根据题目所给的条件能够证明∠AED=∠CGF,EH=GC,且是直角三角形,可根据AAS证明其全等.
(2)过点H作HI⊥EG于I,再证△GIH≌△GFC,根据全等三角形的性质可求出其结果.
本题考查了全等三角形的判定和性质,角平分线的性质,以及直角梯形的性质等.
压轴题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?