试题
题目:
已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于点O.
(1)求证:∠ACE=∠DBF;
(2)若点B是AC的中点,∠E=60°,AE=4,求△OBC的面积.
答案
(1)证明:∵AB=DC,BC=BC,
∴AC=DB,
∵EA⊥AD,FD⊥AD,
∴∠A=∠D=90°,
∵AE=DF,
∴△EAC≌△FDB(SAS),
∴∠ACE=∠DBF.
(2)过点O作OM⊥BC,垂足为M,
∵∠E=60°,
∴∠OBC=∠OCB=30°,
∴△OBC为等腰三角形,
tan60°=
AC
AE
=
AC
4
=
3
,
∴AC=4
3
,
∵点B是AC的中点,
∴BM=
3
,
∵△OBC为等腰三角形,
∴OM既是高也是中线,
∴BC=2
3
,
在Rt△BOM中,
tan30°=
OM
BM
=
OM
3
=
3
3
,
∴OM=1,
S
△BOC
=
1
2
BC·OM=
1
2
×2
3
×1=
3
.
(1)证明:∵AB=DC,BC=BC,
∴AC=DB,
∵EA⊥AD,FD⊥AD,
∴∠A=∠D=90°,
∵AE=DF,
∴△EAC≌△FDB(SAS),
∴∠ACE=∠DBF.
(2)过点O作OM⊥BC,垂足为M,
∵∠E=60°,
∴∠OBC=∠OCB=30°,
∴△OBC为等腰三角形,
tan60°=
AC
AE
=
AC
4
=
3
,
∴AC=4
3
,
∵点B是AC的中点,
∴BM=
3
,
∵△OBC为等腰三角形,
∴OM既是高也是中线,
∴BC=2
3
,
在Rt△BOM中,
tan30°=
OM
BM
=
OM
3
=
3
3
,
∴OM=1,
S
△BOC
=
1
2
BC·OM=
1
2
×2
3
×1=
3
.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定与性质.
(1)根据垂直的定义,以及已知条件,再根据SAS即可证明△ACE≌△DBF,根据全等三角形对应角相等即可证明∠ACE=∠DBF,
(2)根据特殊角的三角函数值得出BC,同时根据已知角得出△OBC的高,从而得出答案.
本题主要考查了三角形全等的判定方法、等腰三角形的性质、特殊角的三角函数值,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明角、边相等常常运三角形全等来证明,难度适中.
应用题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?