试题
题目:
已知:如图,E、F分别是正方形ABCD边BC、AD上的点,且BE=DF
求证:(1)△ABE≌△CDF;
(2)AE∥CF.
答案
证明:(1)∵四边形ABCD是正方形,
∴AB=CD,∠B=∠D=90°.
在△ABE和△CDF中,
AB=CD
∠B=∠D
BE=DF
,
∴△ABE≌△CDF(SAS);
(2)∵正方形ABCD中,AD∥BC,且AD=BC,
又∵DF=BE,
∴AF=CE,
∴AF∥CE且AF=CE,
∴四边形AECF是平行四边形,
∴AE∥CF.
证明:(1)∵四边形ABCD是正方形,
∴AB=CD,∠B=∠D=90°.
在△ABE和△CDF中,
AB=CD
∠B=∠D
BE=DF
,
∴△ABE≌△CDF(SAS);
(2)∵正方形ABCD中,AD∥BC,且AD=BC,
又∵DF=BE,
∴AF=CE,
∴AF∥CE且AF=CE,
∴四边形AECF是平行四边形,
∴AE∥CF.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
(1)根据正方形的性质可以得到△ABE和△CDF中,AB=CD,∠B=∠D,BE=DF,依据SAS即可证得;
(2)证明AF∥CE且AF=CE即可证得.
本题考查了正方形的性质,以及三角形全等的判定,和平行四边形的判定,正确理解正方形的性质是关键.
证明题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?