试题
题目:
如图,在·ABCD中,点F是边BC的中点,连接AF并延长交DC的延长线于点E,连接AC、BE.
(1)求证:CE=CD;
(2)若∠AFC=2∠D,则四边形ABEC是怎样的特殊四边形?请证明你的结论.
答案
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABF=∠ECF,
∵点F是边BC的中点,
∴BF=CF,
在△ABF和△CEF中,
∠ABF=∠ECF
BF=CF
∠AFB=∠EFC
,
∴△ABF≌△ECF(ASA),
∴CE=AB,
∴CE=CD;
(2)四边形ABEC是矩形.
理由:∵AB∥CD,AB=CE,
∴四边形ABEC是平行四边形,
∴AE=2AF,BC=2BF,
∵四边形ABCD是平行四边形,
∴∠ABF=∠D,
∵∠AFC=2∠D,∠AFC=∠ABF+∠BAF,
∴∠ABF=∠BAF,
∴AF=BF,
∴AE=BC,
∴四边形ABEC是矩形.
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABF=∠ECF,
∵点F是边BC的中点,
∴BF=CF,
在△ABF和△CEF中,
∠ABF=∠ECF
BF=CF
∠AFB=∠EFC
,
∴△ABF≌△ECF(ASA),
∴CE=AB,
∴CE=CD;
(2)四边形ABEC是矩形.
理由:∵AB∥CD,AB=CE,
∴四边形ABEC是平行四边形,
∴AE=2AF,BC=2BF,
∵四边形ABCD是平行四边形,
∴∠ABF=∠D,
∵∠AFC=2∠D,∠AFC=∠ABF+∠BAF,
∴∠ABF=∠BAF,
∴AF=BF,
∴AE=BC,
∴四边形ABEC是矩形.
考点梳理
考点
分析
点评
平行四边形的性质;全等三角形的判定与性质;矩形的判定.
(1)由在·ABCD中,点F是边BC的中点,易证得△ABF≌△ECF,可得CE=AB,继而可证得结论;
(2)由(1)易得四边形ABEC是平行四边形,又由∠AFC=2∠D,易证得AF=BF,即可得AE=BC,证得四边形ABEC是矩形.
此题考查了平行四边形的性质、全等三角形的判定与性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?