试题
题目:
如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.
(1)求证:△ABE≌△DFE;
(2)连接CE,当BE平分∠ABC时,CE与BF有怎样的位置关系?试说明理由.
答案
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABE=∠F,
∵E是AD的中点,
∴AE=DE,
在△ABE和△DFE中,
∠ABE=∠F
∠AEB=∠DEF
AE=DE
∴△ABE≌△DFE(AAS).
(2)CF⊥BF.
证明:∵△ABE≌△DFE,
∴BE=EF,
∵BE平分∠ABC,
∴∠ABE=∠CBF,
又∵∠ABE=∠F,
∴∠CBF=∠F,
∴BC=FC,
∴CE⊥BF.
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABE=∠F,
∵E是AD的中点,
∴AE=DE,
在△ABE和△DFE中,
∠ABE=∠F
∠AEB=∠DEF
AE=DE
∴△ABE≌△DFE(AAS).
(2)CF⊥BF.
证明:∵△ABE≌△DFE,
∴BE=EF,
∵BE平分∠ABC,
∴∠ABE=∠CBF,
又∵∠ABE=∠F,
∴∠CBF=∠F,
∴BC=FC,
∴CE⊥BF.
考点梳理
考点
分析
点评
平行四边形的性质;全等三角形的判定与性质.
(1)根据平行线的性质可得∠ABE=∠F,再由对顶角相等及中点的性质,可利用AAS进行全等的判定.
(2)证明BC=BF,再由(1)的结论得出BE=FE,从而利用等腰三角形三线合一的性质,可得出结论.
本题考查了平行四边形的性质、等腰三角形的性质,解答本题需要掌握平行四边形的对边平行且相等及全等三角形的判定与性质.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?