试题

题目:
青果学院如图,已知 AB∥DC,E是BC的中点,AE,DC的延长线交于点F;
(1)求证:△ABE≌△FCE;
(2)连接AC,BF.则四边形ABFC是什么特殊的四边形?请说明理由.
答案
(1)证明:∵AB∥DC,青果学院
∴∠1=∠2,∠FCE=∠EBA,
∵E为BC中点,
∴CE=BE,
∵在△ABE和△FCE中,∠1=∠2,∠FCE=∠EBA,CE=BE,
∴△ABE≌△FCE;
                 
(2)四边形ABFC是平行四边形;           
理由:由(1)知:△ABE≌△FCE,
∴EF=AE,
∵CE=BE,
∴四边形ABFC是平行四边形.
(1)证明:∵AB∥DC,青果学院
∴∠1=∠2,∠FCE=∠EBA,
∵E为BC中点,
∴CE=BE,
∵在△ABE和△FCE中,∠1=∠2,∠FCE=∠EBA,CE=BE,
∴△ABE≌△FCE;
                 
(2)四边形ABFC是平行四边形;           
理由:由(1)知:△ABE≌△FCE,
∴EF=AE,
∵CE=BE,
∴四边形ABFC是平行四边形.
考点梳理
平行四边形的判定;全等三角形的判定与性质.
(1)根据平行线性质求出∠1=∠2,∠FCE=∠EBA,根据AAS推出两三角形全等即可;
(2)根据三角形全等推出EF=AE,根据平行四边形的判定定理推出即可.
本题考查了平行四边形的判定和全等三角形的性质和判定的应用,主要考查学生的推理能力,题目比较典型,难度不大.
证明题.
找相似题