试题
题目:
正方形ABCD中,点P是CD上一动点,连接AP,分别过B、D两点作BE⊥AP,DF⊥AP,垂足为E、F,如图①
(1)请你通过观察或测量BE、DF、EF的长度,然后猜想它们之间的数量关系.若点P在DC的延长线上,如图②,这三条线段长度之间又具有什么样的数量关系?若P在DC的反向延长线上,如图③,这三条线段长度之间又具有什么样的数量关系;请分别直接写出结论.
(2)请在(1)中的三个结论中任意选择一个加以证明.
答案
解:
(1)①BE=DF+EF;
②BE=DF-EF;
③BE=EF-DF;
(2)图①证明如下,
证明:∵BE⊥AP,DF⊥AP,
∴∠BEA+∠AFD=90°,
∵∠ABE+∠BAE=90°,
∠DAF+∠BAE=90°,
∴∠ABE=∠DAF,在正方形ABCD中,AB=AD,
∴△ABE≌△DAF(AAS),
∴DF=AE,BE=AF,
∴BE=DF+EF.
图②③同图①.
解:
(1)①BE=DF+EF;
②BE=DF-EF;
③BE=EF-DF;
(2)图①证明如下,
证明:∵BE⊥AP,DF⊥AP,
∴∠BEA+∠AFD=90°,
∵∠ABE+∠BAE=90°,
∠DAF+∠BAE=90°,
∴∠ABE=∠DAF,在正方形ABCD中,AB=AD,
∴△ABE≌△DAF(AAS),
∴DF=AE,BE=AF,
∴BE=DF+EF.
图②③同图①.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
根据已知可证明△ABE≌△DAF,得出BE=AF,AE=DF,因此第一个图中得出的结论应是BE=AF=AE+EF=DF+EF,同理第二个图中得出的是BE=DF-EF,第三个图得出的结论是BE=EF-DF.
本题主要考查了全等三角形的判定,通过全等三角形得出线段相等是解题的关键.
动点型.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?