试题
题目:
(2010·永嘉县二模)阅读下题及证明过程:
已知:如图,在△ABC中,点D是BC上的一点,点E是AD上的一点,且EB=EC,∠ABE=∠ACE
求证:∠BAE=∠CAE
证明:在△AEB和△AEC中
EB=EC( )
∠ABE=∠ACE( )
AE=AE( )
∴△AEB≌△AEC( )
∴∠BAE=∠CAE( )
上面的证明过程是否正确?若认为正确,请在各步后面的括号内填入依据:若认为不正确,请给予正确的证明.
答案
解:上面的证明过程不正确.
正确的证明如下.
证明:在△EBC中,
∵EB=EC,
∴∠EBC=∠ECB,
又∵∠ABE=∠ACE,
∴∠EBC+∠ABE=∠ECB+∠ACE,即∠ABC=∠ACB;
∴AB=AC,
∵AE=AE,
∴△ABE≌△ACE(SSS);
∴∠BAE=∠CAE.
解:上面的证明过程不正确.
正确的证明如下.
证明:在△EBC中,
∵EB=EC,
∴∠EBC=∠ECB,
又∵∠ABE=∠ACE,
∴∠EBC+∠ABE=∠ECB+∠ACE,即∠ABC=∠ACB;
∴AB=AC,
∵AE=AE,
∴△ABE≌△ACE(SSS);
∴∠BAE=∠CAE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
仔细观察可得到上面的证明过程是不正确的,应该根据角之间的关系从而得到AB=AC;再根据SSS判定△ABE≌△ACE,全等三角形的对应角相等所以∠BAE=∠CAE.
此题主要考查学生对全等三角形的判定方法的理解及运用,常用的方法有AAS、SAS、SSS等.注意SSA或AAA是不能证明三角形全等的.
阅读型.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?