试题
题目:
如图,把平行四边形ABCD翻折,使B点与D点重合,EF为折痕,连接BE,DF.请你猜一猜四边形BFDE是什么特殊四边形?并证明你的猜想.
答案
解:四边形BFDE是菱形.理由如下:
设BD与EF相交于点O.
∵把平行四边形ABCD翻折,使B点与D点重合,EF为折痕,
∴OB=OD,BF=FD.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠OBF=∠ODE.
在△DOE和△BOF中,
∠ODE=∠OBF
OD=OB
∠DOE=∠BOF
,
∴△DOE≌△BOF,
∴OE=OF,
又∵OB=OD,
∴四边形BFDE为平行四边形,
又∵BF=FD,
∴四边形BFDE是菱形.
解:四边形BFDE是菱形.理由如下:
设BD与EF相交于点O.
∵把平行四边形ABCD翻折,使B点与D点重合,EF为折痕,
∴OB=OD,BF=FD.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠OBF=∠ODE.
在△DOE和△BOF中,
∠ODE=∠OBF
OD=OB
∠DOE=∠BOF
,
∴△DOE≌△BOF,
∴OE=OF,
又∵OB=OD,
∴四边形BFDE为平行四边形,
又∵BF=FD,
∴四边形BFDE是菱形.
考点梳理
考点
分析
点评
翻折变换(折叠问题);全等三角形的判定与性质;平行四边形的判定与性质;菱形的判定.
设BD与EF相交于点O.先根据折叠的性质得出OB=OD,BF=FD.再由ASA证明△DOE≌△BOF,得出OE=OF,根据对角线互相平分的四边形是平行四边形证出四边形BFDE为平行四边形,进而根据有一组邻边相等的平行四边形是菱形得出四边形BFDE是菱形.
本题考查了轴对称的性质,全等三角形的判定与性质,平行四边形的判定与性质,菱形的判定,综合性较强,难度中等.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?