试题
题目:
(2013·相城区模拟)如图,点B、F、C、E存同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.
(1)求证:△ABC≌△DEF;
(2)若∠A=65°,求∠AGF的度数.
答案
(1)证明:∵BF=CE,
∴BF+CF=CE+CF,
即BC=EF.
∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°.
在△ABC和△DEF中
AB=DE
∠B=∠E
BC=EF
,
∴△ABC≌△DEF(SAS);
(2)∵△ABC≌△DEF,
∴∠ACB=∠DFE.
∵∠A=65°,
∴∠ACB=25°,
∴∠DFE=25°.
∵∠AGF=∠ACB=∠DFE,
∴∠AGF=50.
(1)证明:∵BF=CE,
∴BF+CF=CE+CF,
即BC=EF.
∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°.
在△ABC和△DEF中
AB=DE
∠B=∠E
BC=EF
,
∴△ABC≌△DEF(SAS);
(2)∵△ABC≌△DEF,
∴∠ACB=∠DFE.
∵∠A=65°,
∴∠ACB=25°,
∴∠DFE=25°.
∵∠AGF=∠ACB=∠DFE,
∴∠AGF=50.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
(1)由条件先得出BC=EF和∠B=∠E,再根据边角边就可以判断△ABC≌△DEF;
(2)由全等的性质就可以得出∠ACB=∠DFE,再利用外交与内角的关系就可以得出结论.
本题考查了全等三角形的判定及性质的运用,三角形的外交与内角的关系的运用,解答本题时证明三角形全等是解答本题的关键.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?