试题
题目:
已知:如图,点A、E、F、C在同一条直线上,∠A=∠C,AB=CD,AE=CF.
求证:BF=DE.
答案
证明:∵AE=FC,
∴AE+EF=FC+EF.
即AF=CE.
在△ABF和△CDE中,
AB=CD
∠A=∠C
AF=CE
,
∴△ABF≌△CDE.
∴BF=DE.
证明:∵AE=FC,
∴AE+EF=FC+EF.
即AF=CE.
在△ABF和△CDE中,
AB=CD
∠A=∠C
AF=CE
,
∴△ABF≌△CDE.
∴BF=DE.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
首先利用SAS证明△ABF≌△DCF,根据全等三角形,对应边相等,可得到结论BF=DE.
本题考查了全等三角形的判定和性质;考查线段相等,可以通过全等三角形来证明,这是一种经常用、很重要的方法,要注意掌握.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?