试题
题目:
将两个全等的直角三角形(△ABC≌△DCE,∠A=∠D=90°)摆放成如图①的形式,使点A、C、D成一直线,我们称之为“K形图”
(1)证明:BC⊥CE;
(2)如图②,连结BE,取BE中点F,连结AF、CF、DF,试判断并证明△AFD的形状.
答案
(1)证明:∵△ABC≌△DCE,∠A=∠D=90°,
∴∠B=∠DCE,∠ACB+∠B=90°,
∴∠ACB+∠DCE=90°,
∴∠BCE=180°-90°=90°,
∴BC⊥CE.
(2)△AFD是等腰直角三角形,
理由是:延长AF交DE延长线于M,
∵∠BAC=∠CDE=90°,
∴∠BAC+∠CDE=180°
∴AB∥DE,
∴△ABF∽△MEF,
∴
AB
EM
=
BF
EF
=
AF
FM
,
∵F为BE中点,
∴BF=EF,
∴AB=EM,AF=FM,
∵△ABC≌△DCE,
∴AC=DE,DC=AB=EM,
∴AD=DM,
∵∠ADM=90°,
∴DF⊥AM,DF=AF=FM,
即△AFD是等腰直角三角形.
(1)证明:∵△ABC≌△DCE,∠A=∠D=90°,
∴∠B=∠DCE,∠ACB+∠B=90°,
∴∠ACB+∠DCE=90°,
∴∠BCE=180°-90°=90°,
∴BC⊥CE.
(2)△AFD是等腰直角三角形,
理由是:延长AF交DE延长线于M,
∵∠BAC=∠CDE=90°,
∴∠BAC+∠CDE=180°
∴AB∥DE,
∴△ABF∽△MEF,
∴
AB
EM
=
BF
EF
=
AF
FM
,
∵F为BE中点,
∴BF=EF,
∴AB=EM,AF=FM,
∵△ABC≌△DCE,
∴AC=DE,DC=AB=EM,
∴AD=DM,
∵∠ADM=90°,
∴DF⊥AM,DF=AF=FM,
即△AFD是等腰直角三角形.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
(1)根据全等三角形的性质推出∠B=∠DCE,求出∠ACB+∠B=90°,即可求出∠BCE=90°.
(2)延长AF交DE延长线于M,证△ABF∽△MEF,推出
AB
EM
=
BF
EF
=
AF
FM
,求出AB=EM,AF=FM,根据全等三角形的性质得出AC=DE,DC=AB=EM,推出AD=DM,根据等腰三角形的性质得出即可.
本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,等腰三角形的性质,相似三角形的性质和判定的应用,主要考查学生综合运用定理进行推理的能力.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?