试题
题目:
某地出租车的收费标准是:起步价7元(即行驶路程不超过3km都需付费7元车费);超过3km以后,以每增加1km,加收2.4元(不足1km按1km计),某人乘坐这种出租车从甲地到乙地地共付车费19元,试求此人从甲地到乙地的路程的最大值.
答案
解:设此人从甲地到乙地的路程的最大值为xkm,
由题意得:(x-3)×2.4+7=19,
整理得:x-3=5,
解得:x=8,
答:此人从甲地到乙地的路程的最大值为8km.
解:设此人从甲地到乙地的路程的最大值为xkm,
由题意得:(x-3)×2.4+7=19,
整理得:x-3=5,
解得:x=8,
答:此人从甲地到乙地的路程的最大值为8km.
考点梳理
考点
分析
点评
专题
一元一次方程的应用.
根据题意找出等量关系:某人乘坐这种出租车从甲地到乙地共付车费=19元.设此人从甲地到乙地的路程的最大值为xkm,由于19>7,所以x>3,即:某人乘坐这种出租车从甲地到乙地需付车费:7+2.4×(x-3),根据等量关系列出方程求解即可,由于不足1km按1km收费,所以此时求出的x的值即为最大值.
本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解.
行程问题.
找相似题
(2013·淄博)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为( )
某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,已知A,B,C三地在一条直线上,若A、C两地距离为2千米,则A、B两地之间的距离是
12.5或10
12.5或10
千米.
某个体户到农贸市场进一批黄瓜,卖掉
1
3
后还剩48kg,则该个体户卖掉
24
24
kg黄瓜.
三个连续奇数的和为21,则它们的积为
315
315
.
小丁今年5岁,妈妈30岁,几年后,妈妈的年龄是小丁的2倍?
设x年后,妈妈的年龄是小丁的2倍.
x年后小丁年龄为
5+x
5+x
岁,妈妈的年龄为
30+x
30+x
岁.
根据题意列出方程为
30+x=2(5+x)
30+x=2(5+x)
,解这个方程得x=
20
20
.
∴
20
20
年后,妈妈的年龄是小丁的2倍.