试题
题目:
某公司生产的一种饮料由A、B两种原液按一定比例配制而成,其中A原液成本价为10元/千克,B原液为15元/千克,按现行价格销售每千克获得60%的利润率.由于物价上涨,A原液上涨20%,B原液上涨10%,配制后的总成本增加15%,公司为了拓展市场,打算再投入现行总成本的25%做广告宣传,使得销售成本再次增加,如果要保证每千克的利润率不变,则此时这种饮料的售价与原售价之差为
8.4
8.4
元/千克.
答案
8.4
解:设配制比例为1:x,由题意得:
10(1+20%)+15(1+10%)x=(10+15x)(1+15%),
解得x=
2
3
,
则原来每千克成本为:
10×1+15×
2
3
1+
2
3
=12
(元),
原来每千克售价为:12×(1+60%)=19.2(元)
此时每千克成本为:12×(1+15%)(1+25%)=17.25(元),
此时每千克售价为:17.25×(1+60%)=27.6(元),
则此时售价与原售价之差为:27.6-19.2=8.4(元).
故答案为:8.4.
考点梳理
考点
分析
点评
专题
一元一次方程的应用.
设配制比例为1:x,则A原液上涨后的成本是10(1+20%)元,B原液上涨后的成本是15(1+10%)x元,配制后的总成本是(10+15x)(1+15%),根据题意可得方程10(1+20%)+15(1+10%)x=(10+15x)(1+15%),解可得配制比例,然后计算出原来每千克的成本和售价,然后表示出此时每千克成本和售价,即可算出此时售价与原售价之差.
此题主要考查了一元一次方程的应用,关键是计算出配制比例,以及原售价和此时售价.
压轴题.
找相似题
(2013·淄博)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为( )
某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,已知A,B,C三地在一条直线上,若A、C两地距离为2千米,则A、B两地之间的距离是
12.5或10
12.5或10
千米.
某个体户到农贸市场进一批黄瓜,卖掉
1
3
后还剩48kg,则该个体户卖掉
24
24
kg黄瓜.
三个连续奇数的和为21,则它们的积为
315
315
.
小丁今年5岁,妈妈30岁,几年后,妈妈的年龄是小丁的2倍?
设x年后,妈妈的年龄是小丁的2倍.
x年后小丁年龄为
5+x
5+x
岁,妈妈的年龄为
30+x
30+x
岁.
根据题意列出方程为
30+x=2(5+x)
30+x=2(5+x)
,解这个方程得x=
20
20
.
∴
20
20
年后,妈妈的年龄是小丁的2倍.