试题
题目:
某车间每天能生产甲种零件500个,或者乙种零件600人,或者丙种零件750个,甲、乙、丙三种零件各一个配成一套,现要在30天内生产最多的成套新产品,则甲、乙、丙三种零件各应生产多少天?
答案
解:设生产甲种零件用x天,生产一种零件用y天,生产丙种零件用z天,由题意,得
x+y+z=30
500x=600y
500x=750z
,
解得:
x=12
y=10
z=8
.
答:甲、乙、丙三种零件各应生产12天、10天、8天.
解:设生产甲种零件用x天,生产一种零件用y天,生产丙种零件用z天,由题意,得
x+y+z=30
500x=600y
500x=750z
,
解得:
x=12
y=10
z=8
.
答:甲、乙、丙三种零件各应生产12天、10天、8天.
考点梳理
考点
分析
点评
一元一次方程的应用.
设生产甲种零件用x天,生产一种零件用y天,生产丙种零件用z天,则生产甲种零件500x个,一种零件600y个,丙种零件750z个,由生产的时间之和为30及甲、乙、丙三种零件的个数相等建立方程组求出其解即可.
本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时由生产的时间之和为30及甲、乙、丙三种零件的个数相等建立方程组是关键.
找相似题
(2013·淄博)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为( )
某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,已知A,B,C三地在一条直线上,若A、C两地距离为2千米,则A、B两地之间的距离是
12.5或10
12.5或10
千米.
某个体户到农贸市场进一批黄瓜,卖掉
1
3
后还剩48kg,则该个体户卖掉
24
24
kg黄瓜.
三个连续奇数的和为21,则它们的积为
315
315
.
小丁今年5岁,妈妈30岁,几年后,妈妈的年龄是小丁的2倍?
设x年后,妈妈的年龄是小丁的2倍.
x年后小丁年龄为
5+x
5+x
岁,妈妈的年龄为
30+x
30+x
岁.
根据题意列出方程为
30+x=2(5+x)
30+x=2(5+x)
,解这个方程得x=
20
20
.
∴
20
20
年后,妈妈的年龄是小丁的2倍.