试题
题目:
如图,已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B处,若∠BDE:∠BED=5:7,则∠B′EC的度数为( )
A.20°
B.30°
C.40°
D.50°
答案
C
解:∵△DEB′是△BDE沿直线DE翻折得到的,
∴∠BDE=∠B′DE,∠BED=∠B′ED,∠B=∠B′,
∵△ABC是等边三角形,
∴∠B=∠B′=60°,
∵∠B′DE+∠B′ED+∠B′=180°,
∴∠B′DE+∠B′ED=120°,
∵∠BDE:∠BED=5:7,
∴∠B′ED=∠BED=70°,
∴∠B′EC=180°-∠B′ED-∠BED=180°-140°=40°,
故选C.
考点梳理
考点
分析
点评
翻折变换(折叠问题);等边三角形的性质.
根据△DEB′是△BDE沿直线DE翻折得到的,得到∠BDE=∠B′DE,∠BED=∠B′ED,∠B=∠B′,结合三角形内角和为180°,以及等边三角形的知识得到∠B′EC的度数.
本题主要考查了翻折变换问题,得到所求角与所给角的度数的关系是解决本题的关键,此题难度不大.
找相似题
(2011·德州)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),…,则第n个图形的周长是( )
如图所示,已知:AB=BC=AC,CD=DE=EC,
(1)求证:∠ACD=∠BCE;
(2)求证:△ADC≌BEC;
(3)求证:AD=BE.
如图,△ABC与△ABD都是等边三角形,点E,F分别在BC,AC上,BE=CF,AE与BF交于点G.
(1)求∠AGB的度数;
(2)连接DG,求证:DG=AG+BG.
如图,已知∠AOB=120°,OM平分∠AOB,将正三角形的一个顶点P放在射线OM上,两边分别与OA、OB交于点C、D.
(1)如图①若边PC和OA垂直,那么线段PC和PD相等吗?为什么?
(2)如图②将正三角形绕P点转过一角度,设两边与OA、OB分别交于C′,D′,那么线段PC′和PD′相等吗?为什么?
已知:BD、AD分别是△ABC的内角、外角的平分线,且相交于点D
(1)若△ABC是等边三角形(如图1),求∠D的度数;
(2)若△ABC是任意三角形(如图2),求证:∠C=2∠D.