试题
题目:
(2008·菏泽)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.
恒成立的结论有
①②③⑤
①②③⑤
.(把你认为正确的序号都填上)
答案
①②③⑤
解:由题意易得△ADC≌△BEC
所以AD=BE,∠ADC=∠BEC,①正确
又因为CD=CE,∠DCP=∠ECQ=60°,又∠ADC=∠BEC,
所以△CDP≌△CEQ.
所以CP=CQ,
∴∠CPQ=∠CQP=60°,
∴∠QPC=∠BCA,
所以PQ∥AE,②正确
又因为AD=BE,所以AD-PD=BE-QE,即AP=BQ,③正确
DE=DP,显然是错误的,④错误
∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确
故填①②③⑤.
考点梳理
考点
分析
点评
专题
等边三角形的性质;全等三角形的判定与性质.
由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.
本题考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.
压轴题;动点型.
找相似题
(2011·德州)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),…,则第n个图形的周长是( )
如图所示,已知:AB=BC=AC,CD=DE=EC,
(1)求证:∠ACD=∠BCE;
(2)求证:△ADC≌BEC;
(3)求证:AD=BE.
如图,△ABC与△ABD都是等边三角形,点E,F分别在BC,AC上,BE=CF,AE与BF交于点G.
(1)求∠AGB的度数;
(2)连接DG,求证:DG=AG+BG.
如图,已知∠AOB=120°,OM平分∠AOB,将正三角形的一个顶点P放在射线OM上,两边分别与OA、OB交于点C、D.
(1)如图①若边PC和OA垂直,那么线段PC和PD相等吗?为什么?
(2)如图②将正三角形绕P点转过一角度,设两边与OA、OB分别交于C′,D′,那么线段PC′和PD′相等吗?为什么?
已知:BD、AD分别是△ABC的内角、外角的平分线,且相交于点D
(1)若△ABC是等边三角形(如图1),求∠D的度数;
(2)若△ABC是任意三角形(如图2),求证:∠C=2∠D.