试题

题目:
解下列方程组.
(1)
x
4
+
y
3
=
4
3
3(x-4)=4(y+2)

(2)
3x+y
4
=
x-y
2
=2x+y-3

(3)
2x+1
3
=
4y-3
2
3(2x+1)-2(4y-3)=5

答案
解:(1)原方程组可化为
3x+4y=16①
3x-4y=20②

①+②得,6x=36,解得x=6,
把x=6代入①得,18+4y=16,解得y=-
1
2

故此方程组的解为
x=6
y=-
1
2


(2)原方程组可化为
x+3y=0
-3x-3y=-6
,即
x+3y=0①
x+y=2②

①-②得,2y=-2,解得y=-1,
把y=-1代入②得,x=3,
故此方程组的解为
x=3
y=-1


(3)原方程组可化为
4x-12y=-11①
3x-4y=-2②

①-②×3得,-5x=-5,解得x=1,
把x=1代入②得,3-4y=-2,解得y=
5
4

故此方程组得解
x=1
y=
5
4

解:(1)原方程组可化为
3x+4y=16①
3x-4y=20②

①+②得,6x=36,解得x=6,
把x=6代入①得,18+4y=16,解得y=-
1
2

故此方程组的解为
x=6
y=-
1
2


(2)原方程组可化为
x+3y=0
-3x-3y=-6
,即
x+3y=0①
x+y=2②

①-②得,2y=-2,解得y=-1,
把y=-1代入②得,x=3,
故此方程组的解为
x=3
y=-1


(3)原方程组可化为
4x-12y=-11①
3x-4y=-2②

①-②×3得,-5x=-5,解得x=1,
把x=1代入②得,3-4y=-2,解得y=
5
4

故此方程组得解
x=1
y=
5
4
考点梳理
解二元一次方程组.
(1)、(3)先把原方程组组中的方程化为不含分母及括号的方程,再用加减消元法或代入消元法求解即可;
(2)先根据题意得出方程组,再把原方程组组中的方程化为不含分母及括号的方程,再用加减消元法或代入消元法求解即可.
本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.
找相似题