试题
题目:
若x
3
+x
2
+x+1=0,则x
-27
+x
-26
+…+x
-1
+1+x+…+x
26
+x
27
的值是( )
A.1
B.0
C.-1
D.2
答案
C
解:由x
3
+x
2
+x+1=0,得x
2
(x+1)+(x+1)=0,
∴(x+1)(x
2
+1)=0,而x
2
+1≠0,
∴x+1=0,
解得x=-1,
所以x
-27
+x
-26
+…+x
-1
+1+x+…+x
26
+x
27
=-1+1-1+1-…+1-1=-1.
故选C.
考点梳理
考点
分析
点评
专题
因式分解的应用.
对所给的条件x
3
+x
2
+x+1=0进行化简,可得x=-1,把求得的x=-1代入所求式子计算即可得到答案.
本题考查了因式分解的应用;对已知条件进行化简得到x=-1是正确解答本题的关键,计算最后结果时要注意最后余一个-1不能抵消,最后结果为-1.
因式分解.
找相似题
(左j11·台湾)下列四个多项式,哪一个是33x+7的倍式( )
(手011·台湾)某直角柱的两底面为全等的梯形,其四个侧面的面积依序为手0平方公分、36平方公分、手0平方公分、60平方公分,且此直角柱的高为了公分.求此直角柱的体积为多少立方公分( )
(2006·济宁)(-8)
2006
+(-8)
2005
能被下列数整除的是( )
(2002·扬州)如果x
2
+3x-3=0,则代数式x
3
+3x
2
-3x+3的值为( )
(2010·保定一模)若x、y互为相反数,则2x
2
+2xy-1的值为( )