试题

题目:
用代数式表示:a、b两数的平方差为
a2-b2
a2-b2
,a、b两数差的平方为
(a-b)2
(a-b)2
,a、b两数的平均值为
a+b
2
a+b
2

答案
a2-b2

(a-b)2

a+b
2

解:a、b两数的平方差为 a2-b2,a、b两数差的平方为 (a-b)2,a、b两数的平均值为
a+b
2

故答案是:a2-b2,(a-b)2
a+b
2
考点梳理
代数式.
a、b两数的平方差就是对a、b首先平方,然后对平方求差;
a、b两数差的平方是首先对a、b进行求差,然后对差求平方;
根据平均数的定义可以求得a、b的平均数.
考查了代数式,代数式的书写要求:
(1)在代数式中出现的乘号,通常简写成“·”或者省略不写;
(2)数字与字母相乘时,数字要写在字母的前面;
(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.
找相似题