试题
题目:
如图,已知B、C是线段AD上的两点,M是AB的中点,N是CD的中点,MN=a,BC=b,则线段AD=
2a-b
2a-b
.
答案
2a-b
解:∵MN=MB+CN+BC=a,BC=b,
∴MB+CN=a-b,
∵M是AB的中点,N是CD中点
∴AB+CD=2(MB+CN)=2(a-b),
∴AD=2(a-b)+b=2a-b.
故答案为:2a-b.
考点梳理
考点
分析
点评
专题
比较线段的长短.
由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.
本题考查线段及中点的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法.
数形结合.
找相似题
(2010·普洱)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )
(2009·潍坊)某班q0名同学分别站在公路的A,B两点处,A,B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( )
(2005·济宁)如图,长度为12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为( )
如图,已知线段58=1八cm,点N在58上,N8=2cm,M是58中点,那么线段MN的长为( )
在直线l上顺次画A、B、C三点,再画线段AB的中点M、线段BC的中点N,如果AB=2 cm,BC=3 cm,那么线段MN的长度是( )