题目:
(2011·芜湖)在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P(m,n)的纵坐标,则点P(m,n)在反比例函数
y=的图象上的概率一定大于在反比例函数
y=的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?
(1)试用列表或画树状图的方法列举出所有点P(m,n)的情形;
(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.
答案
解:(1)列表得:
第二个数 第一个数 |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1,1) |
(1,2) |
(1,3) |
(1,4) |
(1,5) |
(1,6) |
2 |
(2,1) |
(2,2) |
(2,3) |
(2,4) |
(2,5) |
(2,6) |
3 |
(3,1) |
(3,2) |
(3,3) |
(3,4) |
(3,5) |
(3,6) |
4 |
(4,1) |
(4,2) |
(4,3) |
(4,4) |
(4,5) |
(4,6) |
5 |
(5,1) |
(5,2) |
(5,3) |
(5,4) |
(5,5) |
(5,6) |
6 |
(6,1) |
(6,2) |
(6,3) |
(6,4) |
(6,5) |
(6,6) |
画树状图得:

(2)∴一共有36种可能的结果,且每种结果的出现可能性相同,
点(3,4),(4,3),(2,6),(6,2)在反比例函数y=
的图象上,
点(2,3),(3,2),(1,6),(6,1)在反比例函数y=
的图象上.
∴点P(m,n)在两个反比例函数的图象上的概率都为:
=
,
∴小芳的观点正确.
解:(1)列表得:
第二个数 第一个数 |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1,1) |
(1,2) |
(1,3) |
(1,4) |
(1,5) |
(1,6) |
2 |
(2,1) |
(2,2) |
(2,3) |
(2,4) |
(2,5) |
(2,6) |
3 |
(3,1) |
(3,2) |
(3,3) |
(3,4) |
(3,5) |
(3,6) |
4 |
(4,1) |
(4,2) |
(4,3) |
(4,4) |
(4,5) |
(4,6) |
5 |
(5,1) |
(5,2) |
(5,3) |
(5,4) |
(5,5) |
(5,6) |
6 |
(6,1) |
(6,2) |
(6,3) |
(6,4) |
(6,5) |
(6,6) |
画树状图得:

(2)∴一共有36种可能的结果,且每种结果的出现可能性相同,
点(3,4),(4,3),(2,6),(6,2)在反比例函数y=
的图象上,
点(2,3),(3,2),(1,6),(6,1)在反比例函数y=
的图象上.
∴点P(m,n)在两个反比例函数的图象上的概率都为:
=
,
∴小芳的观点正确.