试题
题目:
(2010·荔湾区模拟)初中毕业后,毕业生甲.乙.丙三人面临三种选择:A:就读高中;B:就读职(技)校;C:进入社会就业,其中甲一定读高中,问:(列树形图或者画表格)
(1)三人都就读高中的概率;
(2)恰好只有两人选择相同的概率.
答案
解:(1)画树状图得:
∴一共有9种等可能的结果,
三人都就读高中的有1种情况,
∴三人都就读高中的概率为
1
9
;
(2)∵恰好只有两人选择相同的有6种情况,
∴恰好只有两人选择相同的概率为:
6
9
=
2
3
.
解:(1)画树状图得:
∴一共有9种等可能的结果,
三人都就读高中的有1种情况,
∴三人都就读高中的概率为
1
9
;
(2)∵恰好只有两人选择相同的有6种情况,
∴恰好只有两人选择相同的概率为:
6
9
=
2
3
.
考点梳理
考点
分析
点评
专题
列表法与树状图法.
(1)首先根据题意画树状图,然后根据树状图求得所有等可能的结果与三人都就读高中的情况,再根据概率公式求解即可;
(2)根据树状图求得恰好只有两人选择相同的情况,再根据概率公式求解即可.
此题考查了树状图法与列表法求概率.树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
计算题.
找相似题
(2013·台湾)已知甲袋有5张分别标示1~5的号码牌,乙袋有6张分别标示6~11的号码牌,慧婷分别从甲、乙两袋中各抽出一张号码牌.若同一袋中每张号码牌被抽出的机会相等,则她抽出两张号码牌,其数字乘积为3的倍数的机率为何?( )
(2013·绵阳)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
(2013·临沂)如图,在平面直角坐标系中,点A
1
,A
2
在x轴上,点B
1
,B
2
在y轴上,其坐标分别为A
1
(1,0),A
2
(2,0),B
1
(0,1),B
2
(0,2),分别以A
1
、A
2
、B
1
、B
2
其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( )
(2013·德州)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于
5
4
n
2
,则算过关;否则不算过关,则能过第二关的概率是( )
(2012·玉林)一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x
2
+px+q=0有实数根的概率是( )