题目:
(2013·南通)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.
小明画出树状图如图所示:

小华列出表格如下:
第一次 第二次 |
1 |
2 |
3 |
4 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
2 |
(1,2) |
(2,2) |
① |
(4,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后
不放回
不放回
(填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为
(3,2)
(3,2)
;
(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?
答案
不放回
(3,2)
解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,
∴小明的实验是一个不放回实验,
(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,
(3)理由如下:
∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,
∴概率为:
=
;
∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,
∴概率为:
=
,
∵
>
∴小明获胜的可能性大.
故答案为不放回;(3,2).