试题
题目:
(2007·黄埔区一模)口袋里装有1个红球和2个白球,它们除顔色之外没有其他区别.现要闭着眼晴从中摸两个球,摸法是摸完第一个球放回口袋搅匀后再摸第二个球.有人说摸到一红一白的两个球与摸到全白的两个球的机会是一样的.你同意吗?请用一种合适的方法(例如:树状图、列表)说明其理由.
答案
解:同意.(3分)
因为按要求摸两个球的树状图如下
(9分)
可见摸到一红一白的两个球与摸到全白的两个球的概率均是
4
9
(11分)
所以说摸到一红一白的两个球与摸到全白的两个球的机会是一样的.(12分)
解:同意.(3分)
因为按要求摸两个球的树状图如下
(9分)
可见摸到一红一白的两个球与摸到全白的两个球的概率均是
4
9
(11分)
所以说摸到一红一白的两个球与摸到全白的两个球的机会是一样的.(12分)
考点梳理
考点
分析
点评
专题
列表法与树状图法.
列举出所有情况,比较摸到一红一白的两个球与摸到全白的两个球的情况数占总情况数的多少即可.
主要考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.
数形结合.
找相似题
(2013·台湾)已知甲袋有5张分别标示1~5的号码牌,乙袋有6张分别标示6~11的号码牌,慧婷分别从甲、乙两袋中各抽出一张号码牌.若同一袋中每张号码牌被抽出的机会相等,则她抽出两张号码牌,其数字乘积为3的倍数的机率为何?( )
(2013·绵阳)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
(2013·临沂)如图,在平面直角坐标系中,点A
1
,A
2
在x轴上,点B
1
,B
2
在y轴上,其坐标分别为A
1
(1,0),A
2
(2,0),B
1
(0,1),B
2
(0,2),分别以A
1
、A
2
、B
1
、B
2
其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( )
(2013·德州)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于
5
4
n
2
,则算过关;否则不算过关,则能过第二关的概率是( )
(2012·玉林)一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x
2
+px+q=0有实数根的概率是( )