试题
题目:
如图,为某立方体骰子的表面展开图.掷此骰子一次,记朝上一面的数为x,朝下一面的数为y.记作点(x,y).若小华前两次掷得的两个点所确定的直线过点
P(4,7),则他第三次掷得的点也在这条直线上的概率为
2
3
2
3
.
答案
2
3
解:∵每掷一次可能得到6个点的坐标分别是(其中有两个点是重合的):
(1,1),(1,1),(2,3),(3,2),(3,5),(5,3),
通过描点和计算可以发现,经过(1,1),(2,3),(3,5),
三点中的任意两点所确定的直线都经过点P(4,7),
∴小明第三次掷得的点也在直线l上的概率是:
4
6
=
2
3
.
故答案为:
2
3
.
考点梳理
考点
分析
点评
列表法与树状图法;一次函数图象上点的坐标特征;专题:正方体相对两个面上的文字.
根据一次函数的性质,找出符合点在这条直线上的点的个数,即可根据概率公式求解.
本题考查了一次函数图象上的点的坐标特征及概率公式.用到的知识点为:概率=所求情况数与总情况数之比.
找相似题
(2013·台湾)已知甲袋有5张分别标示1~5的号码牌,乙袋有6张分别标示6~11的号码牌,慧婷分别从甲、乙两袋中各抽出一张号码牌.若同一袋中每张号码牌被抽出的机会相等,则她抽出两张号码牌,其数字乘积为3的倍数的机率为何?( )
(2013·绵阳)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
(2013·临沂)如图,在平面直角坐标系中,点A
1
,A
2
在x轴上,点B
1
,B
2
在y轴上,其坐标分别为A
1
(1,0),A
2
(2,0),B
1
(0,1),B
2
(0,2),分别以A
1
、A
2
、B
1
、B
2
其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( )
(2013·德州)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于
5
4
n
2
,则算过关;否则不算过关,则能过第二关的概率是( )
(2012·玉林)一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x
2
+px+q=0有实数根的概率是( )