试题
题目:
如图,A、B两个转盘均被平均分成三个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.小敏分别转动两个转盘,当两个转盘停止后,小敏把A转盘指针所指区域内的数字记为x,
B转盘指针所指区域内的数字记为y.这样就确定了点P的坐标(x,y).
(1)用列表或画树状图的方法写出点P的所有可能坐标;
(2)求点P落在坐标轴上的概率.
答案
解:(1)如图所示:
;
(2)共9种情况,落在坐标轴上的有5种情况,
∴概率为
5
9
.
解:(1)如图所示:
;
(2)共9种情况,落在坐标轴上的有5种情况,
∴概率为
5
9
.
考点梳理
考点
分析
点评
专题
列表法与树状图法.
(1)用树状图列举出2步实验的所有结果即可;
(2)看点P落在坐标轴上的情况数占总情况数的多少即可.
考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;坐标轴上的点的横坐标或纵坐标为0.
数形结合.
找相似题
(2013·台湾)已知甲袋有5张分别标示1~5的号码牌,乙袋有6张分别标示6~11的号码牌,慧婷分别从甲、乙两袋中各抽出一张号码牌.若同一袋中每张号码牌被抽出的机会相等,则她抽出两张号码牌,其数字乘积为3的倍数的机率为何?( )
(2013·绵阳)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
(2013·临沂)如图,在平面直角坐标系中,点A
1
,A
2
在x轴上,点B
1
,B
2
在y轴上,其坐标分别为A
1
(1,0),A
2
(2,0),B
1
(0,1),B
2
(0,2),分别以A
1
、A
2
、B
1
、B
2
其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( )
(2013·德州)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于
5
4
n
2
,则算过关;否则不算过关,则能过第二关的概率是( )
(2012·玉林)一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x
2
+px+q=0有实数根的概率是( )