试题
题目:
(2013·河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3
3
cm,则弦AB的长为( )
A.9cm
B.3
3
cm
C.
9
2
cm
D.
3
3
2
cm
答案
A
解:∵∠CBA=30°,
∴∠AOC=2∠CBA=60°,
∵AB⊥OC,
∴∠ADO=90°,
∴∠OAD=30°,
∴OD=
1
2
OA=
1
2
×3
3
=
3
2
3
(cm),
由勾股定理得:AD=
O
A
2
-O
D
2
=4.5cm,
∵AB⊥OC,OC过O,
∴AB=2AD=9(cm),
故选A.
考点梳理
考点
分析
点评
垂径定理;圆周角定理;解直角三角形.
根据圆周角定理求出∠AOD,求出∠OAD,根据含30度角的直角三角形性质和勾股定理求出AD、OD,根据垂径定理即可求出AB.
本题考查了垂径定理,含30度角的直角三角形性质,圆周角定理,勾股定理的应用,主要考查学生的推理和计算能力.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )