试题
题目:
(2009·荆门)如图,在·ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.
(1)求证:A、E、C、F四点共圆;
(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.
答案
证明:(1)∵AE⊥BC,AF⊥CD,
∴∠AEC=∠AFC=90°.
∴∠AEC+∠AFC=180°.
∴A、E、C、F四点共圆;
(2)由(1)可知,圆的直径是AC,设AC、BD相交于点O;
∵ABCD是平行四边形,
∴O为圆心,OB=OD,
∴OM=ON,
∴OB-OM=OD-ON,
∴BM=DN.
证明:(1)∵AE⊥BC,AF⊥CD,
∴∠AEC=∠AFC=90°.
∴∠AEC+∠AFC=180°.
∴A、E、C、F四点共圆;
(2)由(1)可知,圆的直径是AC,设AC、BD相交于点O;
∵ABCD是平行四边形,
∴O为圆心,OB=OD,
∴OM=ON,
∴OB-OM=OD-ON,
∴BM=DN.
考点梳理
考点
分析
点评
专题
确定圆的条件;平行四边形的性质.
(1)只要证明A、E、C、F四点所构成的四边形的对角互补,则该四点共圆.
(2)连接AC交BD于O,则O是该圆的圆心,OM=ON,所以易证BM=ND.
本题主要考查了四点共圆的判定条件及平行四边形的性质.
证明题.
找相似题
(2010·河北)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )
(2007·上海)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )
如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=
1
2
BD;③BN+DQ=NQ;④
AB+BN
BM
为定值.其中一定成立的是( )
如图,点ABC在同一条直线上,点D在直线AB外,过这四点中的任意3个点,能画圆的个数是( )
下列关于确定一个圆的说法中,正确的是( )