试题
题目:
如图,A、B、C、D四点都在⊙O上,∠BOC=110°,则∠BDC等于( )
A.110°
B.70°
C.55°
D.125°
答案
D
解:∵圆心角∠BOC和圆周角∠CAB都对
BC
,
∴∠BOC=2∠CAB,又∠BOC=110°,
∴∠CAB=55°,又四边形ABDC为圆O的内接四边形,
∴∠CAB+∠BDC=180°,
则∠BDC=180°-∠CAB=125°.
故选D
考点梳理
考点
分析
点评
专题
圆周角定理;圆内接四边形的性质.
根据同弧所对的圆心角等于所对圆周角的2倍,可得圆心角∠BOC是圆周角∠CAB的2倍,进而由∠BOC的度数求出∠CAB的度数,再根据圆内接四边形的对角互补,由四边形ABDC为圆O的内接四边形,可得∠CAB与∠BDC互补,由∠CAB的度数即可求出∠BDC的度数.
此题考查了圆周角定理,以及圆内接四边形的性质,利用了转化的思想,圆周角定理为同弧所对的圆周角等于所对圆心角的一半;圆内接四边形的对角互补,熟练掌握此定理及性质是解本题的关键.
计算题.
找相似题
(2012·深圳)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内
OB
上一点,∠BMO=120°,则⊙C的半径长为( )
(2009·台湾)如图,圆上有A,B,C,D四点,其中∠BAD=80度.若
ABC
,
ADC
的长度分别为7p,11p,则
BAD
的长度为何( )
(2006·漳州)已知△ABC内接于⊙O,OD⊥AC于D,如果∠COD=32°,那么∠B的度数为( )
(2005·聊城)如图,圆心角∠AOB=120°,P是
AB
上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于( )
(2004·遂宁)如图,已知⊙O中,∠AOB的度数为80°,C是圆周上一点,则∠ACB的度数为( )