试题
题目:
在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于( )
A.1:4
B.1:3
C.1:2
D.3:4
答案
D
解:∵DC:AB=1:2,
∴设DC=x,AB=2x,
∵E、F分别是两腰BC、AD的中点,
∴EF=
1
2
(AB+CD)=
1
2
(2x+x)=
3
2
x,
∴EF:AB=
3
2
x:2x=3:4.
故选D.
考点梳理
考点
分析
点评
梯形中位线定理.
设DC=x,AB=2x,根据梯形的中位线等于两底和的一半表示出EF的长,然后求解即可.
本题考查了梯形的中位线定理,熟练掌握中位线定理是解题的关键,用x表示出DC、AB可以使运算更加简便.
找相似题
(2011·钦州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的( )
(2010·台湾)如图梯形ABCD的两底长为AD=6,BC=10,中线为EF,且∠B=90°,若P为AB上的一点,且PE将梯形ABCD分成面积相同的两区域,则△EFP与梯形ABCD的面积比为( )
(2010·十堰)如图,已知梯形ABCD的中位线为EF,且△AEF的面积为6cm
2
,则梯形ABCD的面积为( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2009·淄博)如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P,若EF=3,则梯形ABCD的周长为( )