题目:
如图,在等腰梯形ABCD中,AD∥BC,AB=CD=10,AD=6,BC=18,M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.
(1)当P在B,C之间运动到什么位置时,四边形ABPQ是平行四边形?请说明理由.
(2)当四边形ABPQ是直角梯形时,点P与C距离是多少?
答案
(1)解:当CP=6时,四边形ABPQ是平行四边形.
理由:∵AD∥BC,
∴∠C=∠CDQ,∠QPC=∠Q,

∵CM=DM
∴△CMP≌△DMQ,
∴PC=DQ=6,
而BP=BC-PC=18-6=12,
AQ=AD+DQ=6+6=12,
∴BP=AQ,
∵AD∥BC,
∴四边形ABPQ是平行四边形.
(2)解:作AE⊥BC于E,DF⊥BC于F,
由于AB=CD,∠B=∠C,∠AEB=∠DFC=90°,
∴△ABE≌△DCF,
∴BE=FC,
由于AE∥DF,AD∥EF,
∴四边形AEFD是平行四边形,
∴AD=EF,
∴
BE===6,
∴
AE===8,
由(1)知:QM=MP,
∴MP=4,
∴
PC===3,
答:当四边形ABPQ是直角梯形时,点P与C距离是3.
(1)解:当CP=6时,四边形ABPQ是平行四边形.
理由:∵AD∥BC,
∴∠C=∠CDQ,∠QPC=∠Q,

∵CM=DM
∴△CMP≌△DMQ,
∴PC=DQ=6,
而BP=BC-PC=18-6=12,
AQ=AD+DQ=6+6=12,
∴BP=AQ,
∵AD∥BC,
∴四边形ABPQ是平行四边形.
(2)解:作AE⊥BC于E,DF⊥BC于F,
由于AB=CD,∠B=∠C,∠AEB=∠DFC=90°,
∴△ABE≌△DCF,
∴BE=FC,
由于AE∥DF,AD∥EF,
∴四边形AEFD是平行四边形,
∴AD=EF,
∴
BE===6,
∴
AE===8,
由(1)知:QM=MP,
∴MP=4,
∴
PC===3,
答:当四边形ABPQ是直角梯形时,点P与C距离是3.