答案
解:有三种方法证明AC=CE.
方法①:∵ABCD为等腰梯形,
∴∠ADC=∠DCB=∠CBE,
又∵AD=BC,CD=BE,
∴△ADC≌△CBE,
∴AC=CE;
方法②:如图,连接BD,证明四边形CDBE为平行四边形,可得BD=CE,再根据梯形对角线相等,得BD=AC;
∴AC=CE;

方法③:作DG⊥AE,CF⊥AE,垂足分别为G,F,证明AF=FE即可.

解:有三种方法证明AC=CE.
方法①:∵ABCD为等腰梯形,
∴∠ADC=∠DCB=∠CBE,
又∵AD=BC,CD=BE,
∴△ADC≌△CBE,
∴AC=CE;
方法②:如图,连接BD,证明四边形CDBE为平行四边形,可得BD=CE,再根据梯形对角线相等,得BD=AC;
∴AC=CE;

方法③:作DG⊥AE,CF⊥AE,垂足分别为G,F,证明AF=FE即可.