试题
题目:
已知,如图,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF∥AC交BC于F.证明BE=FC.
答案
证明:∵BD是∠ABC的平分线,
∴∠EBD=∠CBD,
∵DE∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
∵DE∥BC,EF∥AC,
∴四边形DEFC是平行四边形,
∴DE=FC,
∴BE=FC.
证明:∵BD是∠ABC的平分线,
∴∠EBD=∠CBD,
∵DE∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
∵DE∥BC,EF∥AC,
∴四边形DEFC是平行四边形,
∴DE=FC,
∴BE=FC.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质;等腰三角形的判定与性质.
由BD是∠ABC的平分线,DE∥BC,易证得△EBD是等腰三角形,即BE=DE,又由DE∥BC,EF∥AC,可得四边形DEFC是平行四边形,即可得DE=FC,即可证得BE=FC.
此题考查了平行四边形的判定与性质、等腰三角形的判定、角平分线的定义以及平行线的性质.此题难度适中,注意有角平分线与平行线易得等腰三角形,注意数形结合思想的应用.
证明题.
找相似题
(2007·嘉兴)已知△ABC的面积为36,将△ABC沿BC的方向平移到△A′B′C的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为( )
(2005·天津)如图,在·ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )