试题
题目:
如图,E、F是平行四边形ABCD对角线上的两点,给出下列三个条件:①BE=DF;②AF=CE;③∠AEB=∠CFD.
(1)在上述三个条件中,能够使四边形AECF是平行四边形的条件有
①③
①③
(只需填写序号);
(2)从(1)中选择一个加以证明.
答案
①③
解:(1)①③;
(2)证明:
∵平行四边形ABCD,
∴AB=CD,∠ADF=∠EBC.
又∵BE=DF,
∴△BEA≌△DFC.
∴AE=FC.
同理可证:△DFA≌△BEC从而得AF=EC.
∴四边形AECF是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质;全等三角形的判定与性质.
根据(1)的已知条件,利用平行四边形ABCD,证得AE=FC,AF=EC,即可证明四边形AECF是平行四边形.
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
证明题;开放型.
找相似题
(2007·嘉兴)已知△ABC的面积为36,将△ABC沿BC的方向平移到△A′B′C的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为( )
(2005·天津)如图,在·ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )