试题

题目:
青果学院已知:如图,在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:
(1)△ACD≌△CBF;
(2)四边形CDEF为平行四边形.
答案
(1)证明:∵△ABC为等边三角形,
∴AC=CB,∠ACD=∠CBF=60°,
∵在△ACD和△CBF中,
AC=BC
∠ACD=∠CBF
CD=BF

∴△ACD≌△CBF(SAS);

(2)证明:∵△ACD≌△CBF,
∴AD=CF,∠CAD=∠BCF.
∵△AED为等边三角形,
∴∠ADE=60°,且AD=DE.
∴FC=DE.
∵∠EDB+60°=∠BDA=∠CAD+∠ACD=∠BCF+60°,
∴∠EDB=∠BCF.
∴ED∥FC.
∵ED
.
FC,
∴四边形CDEF为平行四边形.
(1)证明:∵△ABC为等边三角形,
∴AC=CB,∠ACD=∠CBF=60°,
∵在△ACD和△CBF中,
AC=BC
∠ACD=∠CBF
CD=BF

∴△ACD≌△CBF(SAS);

(2)证明:∵△ACD≌△CBF,
∴AD=CF,∠CAD=∠BCF.
∵△AED为等边三角形,
∴∠ADE=60°,且AD=DE.
∴FC=DE.
∵∠EDB+60°=∠BDA=∠CAD+∠ACD=∠BCF+60°,
∴∠EDB=∠BCF.
∴ED∥FC.
∵ED
.
FC,
∴四边形CDEF为平行四边形.
考点梳理
平行四边形的判定;全等三角形的判定与性质;等边三角形的性质.
(1)根据等边三角形的性质得出AC=CB,∠ACD=∠CBF=60°,进而利用SAS得出即可;
(2)利用全等三角形判定与性质得出AD=CF,∠CAD=∠BCF,进而得出ED
.
FC即可得出答案.
此题主要考查了平行四边形的判定以及全等三角形的判定,根据已知等边三角形的性质得出△ACD≌△CBF是解题关键.
证明题.
找相似题