试题

题目:
已知:a2+b2=13,a-b=1.求ab的值.
答案
解:将a-b=1两边平方得:(a-b)2=a2+b2-2ab=1,
把a2+b2=13代入得:13-2ab=1,
解得:ab=6.
解:将a-b=1两边平方得:(a-b)2=a2+b2-2ab=1,
把a2+b2=13代入得:13-2ab=1,
解得:ab=6.
考点梳理
完全平方公式.
将a-b=1两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab的值.
此题考查了完全平方公式,熟练掌握公式是解本题的关键.
计算题.
找相似题