试题

题目:
已知:x+
1
x
=2
,求:①x2+
1
x2
的值;②x3+
1
x3
的值;③对任意正整数n,猜想:xn+
1
xn
的值?(不须说明理由)
答案
解:(1)∵x+
1
x
=2,
x2+
1
x2
=(x+
1
x
2-2,
=22-2,
=2;

(2)∵x+
1
x
=2,
x3+
1
x3
=(x+
1
x
3-3(x+
1
x
),
=23-3×2,
=8-6,
=2;

(3)由(1)(2)的值都为2,可猜想(3)中xn+
1
xn
=2.
解:(1)∵x+
1
x
=2,
x2+
1
x2
=(x+
1
x
2-2,
=22-2,
=2;

(2)∵x+
1
x
=2,
x3+
1
x3
=(x+
1
x
3-3(x+
1
x
),
=23-3×2,
=8-6,
=2;

(3)由(1)(2)的值都为2,可猜想(3)中xn+
1
xn
=2.
考点梳理
完全平方公式.
灵活变化完全平方公式得:x2+
1
x2
=(x+
1
x
2-2,x3+
1
x3
=(x+
1
x
3-3(x+
1
x
),由(1)(2)的值可猜想(3)中式子的值.
本题考查了完全平方公式,当题中出现两个数的和的等式时,一般要用到它们的乘方.
规律型.
找相似题