试题

题目:
已知x-y=6,xy=-8,
(1)求x2+y2的值;
(2)求代数式
1
2
(x+y+z)2+
1
2
(x-y-z)(x-y+z)-z(x+y)
的值.
答案
解:(1)∵x-y=6,xy=-8,
∴(x-y)2=x2+y2-2xy,
∴x2+y2=(x-y)2+2xy=36-16=20;

(2)∵
1
2
(x+y+z)2+
1
2
(x-y-z)(x-y+z)-z(x+y),
=
1
2
(x2+y2+z2+2xy+2xz+2yz)+
1
2
[(x-y)2-z2]-xz-yz,
=
1
2
x2+
1
2
y2+
1
2
z2+xy+xz+yz+
1
2
x2+
1
2
y2-xy-
1
2
z2-xz-yz,
=x2+y2
又∵x2+y2=20,
∴原式=20.
解:(1)∵x-y=6,xy=-8,
∴(x-y)2=x2+y2-2xy,
∴x2+y2=(x-y)2+2xy=36-16=20;

(2)∵
1
2
(x+y+z)2+
1
2
(x-y-z)(x-y+z)-z(x+y),
=
1
2
(x2+y2+z2+2xy+2xz+2yz)+
1
2
[(x-y)2-z2]-xz-yz,
=
1
2
x2+
1
2
y2+
1
2
z2+xy+xz+yz+
1
2
x2+
1
2
y2-xy-
1
2
z2-xz-yz,
=x2+y2
又∵x2+y2=20,
∴原式=20.
考点梳理
完全平方公式.
(1)由(x-y)2=x2+y2-2xy,即可得x2+y2=(x-y)2+2xy,将x-y=6,xy=-8代入即可求得x2+y2的值;
(2)首先化简
1
2
(x+y+z)2+
1
2
(x-y-z)(x-y+z)-z(x+y),可得
1
2
(x+y+z)2+
1
2
(x-y-z)(x-y+z)-z(x+y)=x2+y2,由(1)即可求得答案.
此题考查了完全平方公式的应用.注意熟记公式的几个变形公式对解题大有帮助.
找相似题