试题

题目:
若x+
1
x
=2,则x2+
1
x2
=
2
2
,x3+
1
x3
=
2
2
,x4+
1
x4
=
2
2
.任意正整数n,猜想:xn+
1
xn
=
2
2

答案
2

2

2

2

解:∵x+
1
x
=2,
∴(x+
1
x
2=4,
∴x2+
1
x2
=2;

∵x3+
1
x3
=(x+
1
x
)(x2+
1
x2
-1),
=2×(2-1),
=2;

x4+
1
x4
=(x2+
1
x2
2-2,
=4-2,
=2,

故xn+
1
xn
=2.
故答案为:2.
考点梳理
完全平方公式.
先根据x+
1
x
=2求出(x+
1
x
2=4,进而可得出x2+
1
x2
的值,同理求出x3+
1
x3
及x4+
1
x4
的值,找出规律即可进行解答.
本题考查的是完全平方公式及立方和公式,能根据题意得出x2+
1
x2
=2是解答此题的关键.
规律型.
找相似题