试题

题目:
化简:(2+1)(22+1)(24+1)(28+1)+1.
答案
解:(2+1)(22+1)(24+1)(28+1)+1,
=(2-1)(2+1)(22+1)(24+1)(28+1)+1,
=(22-1)(22+1)(24+1)(28+1)+1,
=(24-1)(24+1)(28+1)+1,
=(28-1)(28+1)+1,
=216-1+1,
=216
解:(2+1)(22+1)(24+1)(28+1)+1,
=(2-1)(2+1)(22+1)(24+1)(28+1)+1,
=(22-1)(22+1)(24+1)(28+1)+1,
=(24-1)(24+1)(28+1)+1,
=(28-1)(28+1)+1,
=216-1+1,
=216
考点梳理
平方差公式.
在原式前面加(2-1),利用两数的和与这两数的差的积,等于这两个数的平方差,把原式变成可以运用平方差公式的式子,再利用平方差公式计算即可.
本题主要考查了平方差公式,添加(2-1)构造成平方差公式的形式是解题的关键,也是本题的难点.
找相似题