试题

题目:
等腰三角形的周长为20cm,若腰长为xcm,底边长为ycm,则它的底边长y与腰长x的关系式为
y=20-2x
y=20-2x
,自变量x的取值范围为
5<x<10
5<x<10

答案
y=20-2x

5<x<10

解:依题意有y=20-2x,又
2x>20-2x
20-2x>0

解得:5<x<10.
考点梳理
根据实际问题列一次函数关系式;等腰三角形的性质.
底边长=周长-2腰长,根据两腰长>底边长,底边长>0可得x的取值范围.
根据题意,找到所求量的等量关系是解决问题的关键.应注意根据实际意义求得自变量的取值范围.
几何图形问题.
找相似题